Simulating materials failure by using up to one billion atoms and the world's fastest computer: Brittle fracture.

نویسندگان

  • Farid F Abraham
  • Robert Walkup
  • Huajian Gao
  • Mark Duchaineau
  • Tomas Diaz De La Rubia
  • Mark Seager
چکیده

We describe the first of two large-scale atomic simulation projects on materials failure performed on the 12-teraflop ASCI (Accelerated Strategic Computing Initiative) White computer at Lawrence Livermore National Laboratory. This is a multimillion-atom simulation study of crack propagation in rapid brittle fracture where the cracks travel faster than the speed of sound. Our finding centers on a bilayer solid that behaves under large strain like an interface crack between a soft (linear) material and a stiff (nonlinear) material. We verify that the crack behavior is dominated by the local (nonlinear) wave speeds, which can be in excess of the conventional sound speeds of a solid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating materials failure by using up to one billion atoms and the world's fastest computer: Work-hardening.

We describe the second of two large-scale atomic simulation projects on materials failure performed on the 12-teraflop ASCI (Accelerated Strategic Computing Initiative) White computer at the Lawrence Livermore National Laboratory. This investigation simulates ductile failure by using more than one billion atoms where the true complexity of the creation and interaction of hundreds of dislocation...

متن کامل

Cracking Elements Method for Simulating Complex Crack Growth

The cracking elements method (CEM) is a novel numerical approach for simulating fracture of quasi-brittle materials. This method is built in the framework of conventional finite element method (FEM) based on standard Galerkin approximation, which models the cracks with disconnected cracking segments. The orientation of propagating cracks is determined by local criteria and no explicit or implic...

متن کامل

Ab initio dynamics of rapid fracture∗

As our title implies, we consider materials failure at the fundamental level of atomic bond breaking and motion. Using computational molecular dynamics, scalable parallel computers and visualization, we are studying the failure of notched solids under tension using in excess of 108 atoms. In rapid brittle fracture, two of the most intriguing features are the roughening of a crack’s surface with...

متن کامل

Atomistic Origin of Brittle Failure of Boron Carbide from Large-Scale Reactive Dynamics Simulations: Suggestions toward Improved Ductility.

Ceramics are strong, but their low fracture toughness prevents extended engineering applications. In particular, boron carbide (B(4)C), the third hardest material in nature, has not been incorporated into many commercial applications because it exhibits anomalous failure when subjected to hypervelocity impact. To determine the atomistic origin of this brittle failure, we performed large-scale (...

متن کامل

Fracture Mechanism of CoCrMo Porous Nano-composite Prepared by Powder Metallurgy Route

The main aim of this research was to find the mechanism for the failure of the CoCrMo porous nano-composite by characterizing microstructural changes and fractured surface after compression test. For this purpose, porous nano-composites were prepared with the addition of bioactive glass nano-powder to Co-base alloy with 22.5% porosity by the combination of space-holder and powder metallurgy tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 9  شماره 

صفحات  -

تاریخ انتشار 2002